(*co-first author)

Journal Articles

FY2021

  1. Nucleus accumbens as the motivation center is essential for functional recovery after spinal cord injury. Suzuki M, Nishimura Y. Journal of Rehabilitation Neurosciences, 2021 (in press) doi:10.24799/jrehabilneurosci.201115
  2. 田添歳樹, 西村幸男. 閉回路型脊髄刺激によるニューロモジュレーションの誘導. 運動器リハビリテーション, 2021 (in press)
  3. MRS-measured glutamate versus GABA reflects excitatory versus inhibitory neural activities in awake mice. Yuhei Takado*, Hiroyuki Takuwa*, Kazuaki Sampei, Takuya Urushihata, Manami Takahashi, Masafumi Shimojo, Shoko Uchida, Nobuhiro Nitta, Sayaka Shibata, Keisuke Nagashima, Yoshihiro Ochi, Maiko Ono, Jun Maeda, Yutaka Tomita, Naruhiko Sahara, Jamie Near, Ichio Aoki, Kazuhisa Shibata, and Makoto Higuchi. Journal of Cerebral Blood Flow & Metabolism, 2021 (in press)
  4. Visual perceptual learning of a primitive feature in human V1/V2 as a result of unconscious processing, revealed by decoded functional MRI neurofeedback (DecNef). Zhiyan Wang, Masako Tamaki, Sebastian M. Frank, Kazuhisa Shibata, Michael S. Worden, Takashi Yamada, Mitsuo Kawato, Yuka Sasaki, and Takeo Watanabe, Journal of Vision, 2021, 21(8):24.
  5. The DecNef collection, fMRI data from closed-loop decoded neurofeedback experiments, Aurelio Cortese, Saori C. Tanaka, Kaoru Amano, Ai Koizumi, Hakwan Lau, Yuka Sasaki, Kazuhisa Shibata, Vincent Taschereau-Dumouchel, Takeo Watanabe, and Mitsuo Kawato. Scientific Data. 2021, 65.
  6. Mechanisms of fMRI neurofeedback, Kazuhisa Shibata, in fMRI Neurofeedback (edited by Michelle Hampson). Academic Press, 2021.
  7. Role of the nucleus accumbens in functional recovery from spinal cord injury. Sawada M, Nishimura Y. Neurosci Res. 2021 Nov;172:1-6. doi: 10.1016/j.neures.2021.04.006.
  8. Assessment of safety of self-controlled repetitive trans-vertebral magnetic stimulation. Sasada S, Kadowaki S, Tazoe T, Murayama T, Kato K, Nakao Y, Matsumoto H, Nishimura Y, Ugawa Y. Clin Neurophysiol. 2021. 132(12):3166-3176. doi: 10.1016/j.clinph.2021.09.016.
  9. Changes in beta and high-gamma power in resting-state electrocorticogram induced by repetitive transcranial magnetic stimulation of primary motor cortex in unanesthetized macaque monkeys. Honda Y, Nakamura S, Ogawa K, Yoshino R, Tobler PN, Nishimura Y, Tsutsui KI. Neurosci Res. 2021. 171:41-48. doi: 10.1016/j.neures.2021.02.002.
  10. Cerebellar outputs contribute to spontaneous and movement-related activity in the motor cortex of monkeys. Sano N, Nakayama Y, Ishida H, Chiken S, Hoshi E, Nambu A, Nishimura Y. Neurosci Res. 2021. 164:10-21. doi: 10.1016/j.neures.2020.03.010.
  11. Adaptation of the corticomuscular and biomechanical systems of pianists. Yudai Kimoto, Masato Hirano, Shinichi Furuya. Cerebral Cortex 2021. doi: 10.1093/cercor/bhab229 (in press)
  12. Back to feedback: aberrant sensorimotor control in music performance under pressure. Shinichi Furuya*, Reiko Ishimaru*, Takanori Oku, Noriko Nagata. Communications Biology 2021. doi: 10.1038/s42003-021-02879-4 (in press)
  13. Aberrant cerebello-cortical connectivity in pianists with focal task-specific dystonia. Kahori Kita, Shinichi Furuya, Rieko Osu, Takashi Sakamoto, Takashi Hanakawa. Cerebral Cortex 2021, 31(10): 4853–4863.
  14. Factors of choking under pressure in musicians. Shinichi Furuya*, Reiko Ishimaru*, Noriko Nagata. PLoS One 2021, 16(1): e0244082

FY2020

  1. Artificial cortico-muscular connection via neural interface to regain volitional control of limb movements. Kato K, Nishimura Y. Journal of Rehabilitation Neurosciences. 2020, 20(1), 1–6. doi.org/10.24799/jrehabilneurosci.200731
  2. The Ventral Striatum is a Key Node for Functional Recovery of Finger Dexterity After Spinal Cord Injury in Monkeys. Suzuki M, Onoe K, Sawada M, Takahashi N, Higo N, Murata Y, Tsukada H, Isa T, Onoe H, Nishimura Y. Cereb Cortex. 2020 May 14;30(5):3259-3270. doi: 10.1093/cercor/bhz307.